

# Web Application Vulnerability Trends in the Wild aaj@google.com, W3C TPAC 2018

Background



GOOGLE VULNERABILITY REWARD PROGRAM

#### 2017 Year in Review



1,230

INDIVIDUAL

REWARDS



274

PAID RESEARCHERS



113

COUNTRIES REPRESENTED IN BUG REPORTS



60

COUNTRIES REPRESENTED IN BUG REWARDS



\$112,500 BIGGEST

SINGLE REWARD



\$160,000+

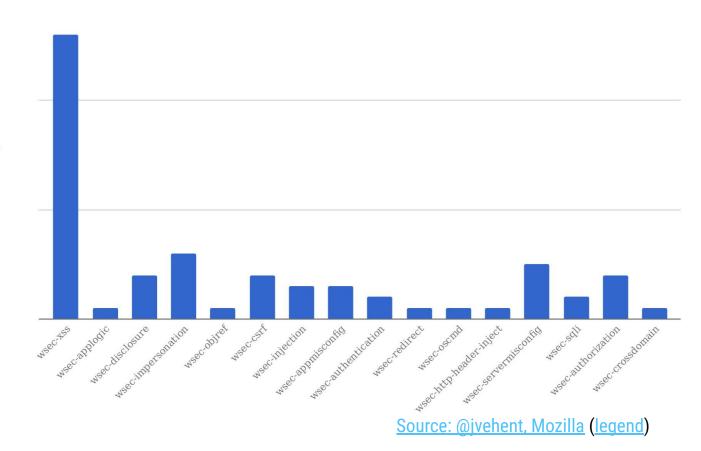
DONATED TO CHARITY

#### Google Application Security

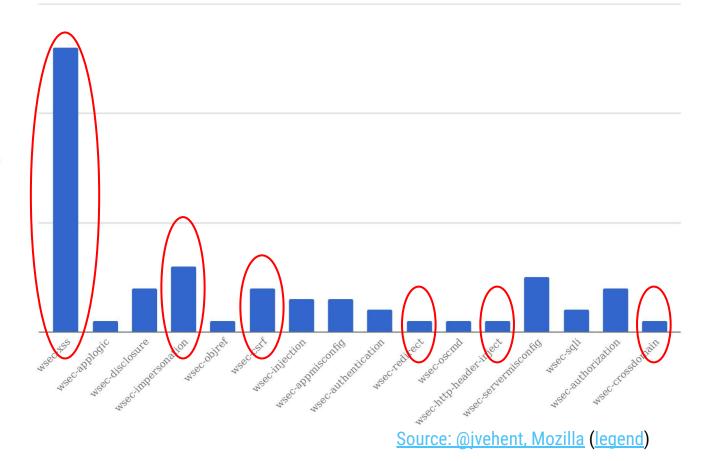
Home Learning Reward Programs Hall of Fame Research

Google VRP Patch Rewards AutoFuzz Patch Rewards Research Grants Chrome Rewards Android Rewards Google Play Rewards

| Category                                                                 | Examples                                                                                                          | Applications that<br>permit taking over a<br>Google account [1] | Other highly<br>sensitive<br>applications<br>[2] | Normal<br>Google<br>applications | Non-integrated acquisitions and other sandboxed or lower priority applications [3] |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------|--|--|--|
|                                                                          | Vi                                                                                                                | Inerabilities giving direct acc                                 | cess to Google server                            | S                                |                                                                                    |  |  |  |
| Remote code execution                                                    | Command injection,<br>deserialization bugs,<br>sandbox escapes                                                    | \$31,337                                                        | \$31,337                                         | \$31,337                         | \$1,337 - \$5,000                                                                  |  |  |  |
| Unrestricted file system or<br>database access                           | Unsandboxed XXE, SQL<br>injection                                                                                 | \$13,337                                                        | \$13,337                                         | \$13,337                         | \$1,337 - \$5,000                                                                  |  |  |  |
| Logic flaw bugs leaking or<br>bypassing significant<br>security controls | <i>Direct object reference,<br/>remote user<br/>impersonation</i>                                                 | \$13,337                                                        | \$7,500                                          | \$5,000                          | \$500                                                                              |  |  |  |
|                                                                          | Vulnerabilities givi                                                                                              | ing access to client or auther                                  | nticated session of the                          | logged-in victim                 |                                                                                    |  |  |  |
| Execute code on the client                                               | <u>Web</u> : Cross-site<br>scripting<br><u>Mobile / Hardware</u> : Code<br>execution                              | \$7,500                                                         | \$5,000                                          | \$3,133.7                        | \$100                                                                              |  |  |  |
| Other valid security<br>vulnerabilities                                  | <u>Web</u> : <i>CSRF, Clickjacking</i><br><u>Mobile / Hardware</u> :<br>Information leak,<br>privilege escalation | \$500 - \$7,500                                                 | \$500 - \$5,000                                  | \$500 -<br>\$3,133.7             | \$100                                                                              |  |  |  |


### Ecosystem of web applications at Google

- Server-side code
  - 4 major languages: Java, C++, Python, Go
  - 16 HTML template system engines
  - Dozens of server-side stacks/frameworks
- Client-side code: mostly JS and TypeScript
  - A diverse set of frameworks: Angular, Polymer, GWT, Closure
- 619 distinct applications under \*.google.com
  - <u>2 billion lines of code</u> total
  - Large amount of third-party code, including in external repositories
- Hundreds of acquired companies, often with very different infrastructure


Traditional SDL/hardening approaches have limits => **emphasis on the platform**.

**Vulnerabilities** 

Paid bounties by vulnerability on Mozilla websites in 2016 and 2017



Count of Vulnerability



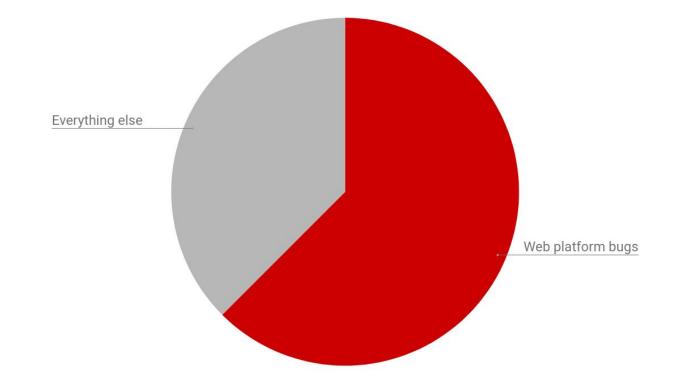
**Count of Vulnerability** 

#### **VULNERABILITIES BY INDUSTRY**

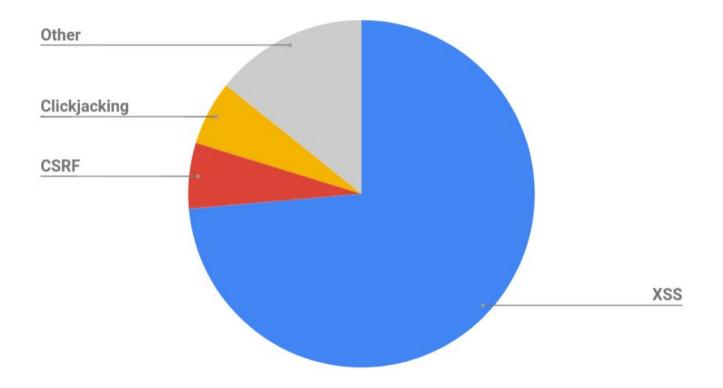
|                                          | MEDIA &<br>ENTERTAINMENT | FINANCIAL<br>&BANKING | GAMING | HEALTHCARE | ECOMMERCE<br>& RETAIL | TECHNOLOGY | TRANSPORTATION | TRAVEL & HOSPITALITY | PLATFORM |  |  |
|------------------------------------------|--------------------------|-----------------------|--------|------------|-----------------------|------------|----------------|----------------------|----------|--|--|
| CROSS-SITE<br>SCRIPTING (XSS)            | 35%                      | 19%                   | 28%    | 31%        | <mark>26</mark> %     | 34%        | 32%            | 47%                  | 26%      |  |  |
| IMPROPER<br>AUTHENTICATION               | 16%                      | 22%                   | 23%    | 18%        | 15%                   | 1 4 %      | 20%            | 12%                  | 12%      |  |  |
| OROSS-SITE REQUEST<br>FORGERY (CSRF)     | 8%                       | 10%                   | 5%     | 12%        | 11%                   | 9%         | 3%             | 11%                  | 8%       |  |  |
| VIOLATION OF SECURE<br>DESIGN PRINCIPLES | 12%                      | 17%                   | 12%    | 8%         | 11%                   | 11%        | 11%            | 10%                  | 10%      |  |  |
| INFORMATION<br>DISCLOSURE                | 12%                      | 14%                   | 23%    | 8.5%       | 10%                   | 14%        | 19%            | 7 %                  | 12%      |  |  |
| DENIAL OF SERVICE                        | 0%                       | 2 %                   | 2%     | 0%         | 7%                    | 0%         | 1%             | 2 %                  | 2%       |  |  |
| OPEN REDIRECT                            | 4%                       | 5%                    | 5%     | 3%         | 5%                    | 5%         | 3%             | 4 %                  | 4%       |  |  |
| PRIVILEGE                                | 3%                       | 3%                    | 5%     | 7%         | 5%                    | 6%         | 4%             | 4%                   | 4%       |  |  |
| MEMORY                                   | 0%                       | 0%                    | 1%     | 0%         | 4%                    | 0%         | 0%             | 0 %                  | 1%       |  |  |
| CRYPTOGRAPHIC<br>ISSUES                  | 1%                       | 3 %                   | 3%     | 1%         | 3 %                   | 3 %        | 2%             | 0%                   | 2 %      |  |  |
| UI REDRESSING<br>(CLICKJACKING           | 2%                       | 2 %                   | 0%     | 1%         | 2 %                   | 2%         | 1%             | 0 %                  | 1%       |  |  |
| COMMAND INJECTION                        | 2%                       | 2 %                   | 0%     | 3%         | 1%                    | 2%         | 0%             | 2 %                  | 1%       |  |  |
| SQL INJECTION                            | 2%                       | 2 %                   | 3%     | 6%         | 0%                    | 0%         | 3%             | 2 %                  | 2%       |  |  |
| CODE INJECTION                           | 2%                       | 0%                    | 1%     | 3 %        | 0%                    | 2%         | 2%             | 0%                   | 1%       |  |  |

Figure 2: Percentage of vulnerability type by industry from 2013 to May 2017.

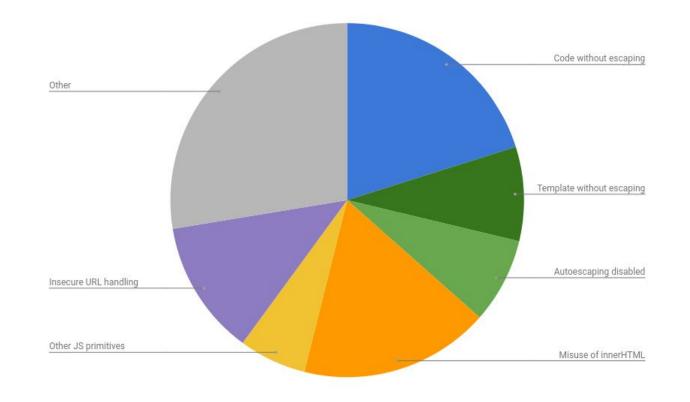
Source: HackerOne report, 2017


#### Vulnerabilities by Industry

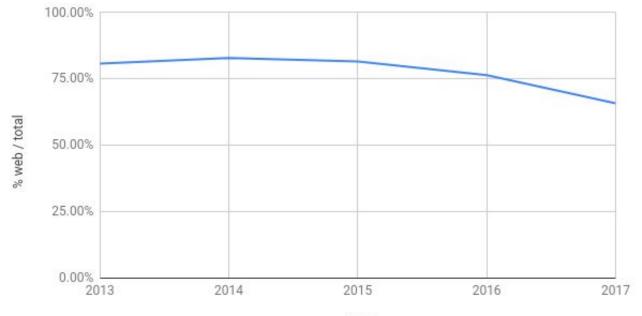
|                                          | CONS | SUMER GOODS | FINANCIAL SERVICES<br>& Insurance |                  | GOVERNMENT |     | HEALTHCARE |     | MEDIA &<br>Entertainment |     | PROFESSIONAL<br>SERVICES |     | RETAIL &<br>ECOMMERCE |     | TECHNOLOGY |     | TELECOM |     | TRAM | ISPORTATION |    | TRAVEL &<br>Hospitality |
|------------------------------------------|------|-------------|-----------------------------------|------------------|------------|-----|------------|-----|--------------------------|-----|--------------------------|-----|-----------------------|-----|------------|-----|---------|-----|------|-------------|----|-------------------------|
| CROSS-SITE<br>SCRIPTING (XSS)            |      | 23%         |                                   | 24%              |            | 26% |            | 19% |                          | 28% | -                        | 27% |                       | 24% |            | 21% |         | 24% |      | 59%         |    | 38%                     |
| INFORMATION<br>DISCLOSURE                |      | 17%         |                                   | 18%              |            | 18% |            | 25% |                          | 16% |                          | 14% |                       | 16% |            | 30% |         | 18% |      | 1%          | ۰. | 13%                     |
| IMPROPER<br>AUTHENTICATION               |      | 7 %         |                                   | 8%               | l.         | 3 % |            | 6%  |                          | 9%  |                          | 11% |                       | 8%  | Ε.         | 8%  |         | 5%  |      | 18%         |    | 10%                     |
| VIOLATION OF SECURE<br>DESIGN PRINCIPLES |      | 6%          |                                   | 9%               |            | 11% |            | 10% |                          | 10% |                          | 12% |                       | 9%  |            | 8%  |         | 13% |      | 6%          | I  | 4%                      |
| CROSS-SITE REQUEST<br>FORGERY (CSRF)     |      | 12%         |                                   | 10%              | L.         | 4 % |            | 8%  | 1                        | 7%  | 1                        | 5%  |                       | 12% | ١.         | 7%  | ۰.      | 8%  | I    | 2%          | ι. | 8%                      |
| OPEN REDIRECT                            | I    | 4%          | 1                                 | <mark>6</mark> % |            | 8%  |            | 5%  |                          | 7%  | •                        | 6%  |                       | 8%  | I.         | 5%  | Ĩ.      | 4%  | I    | 2 %         |    | 9%                      |
| PRIVILEGE<br>ESCALATION                  | i.   | 5%          | Ľ                                 | 4%               |            | 1%  |            | 1%  | í.                       | 3%  | 1                        | 5 % | l.                    | 5%  | I.         | 5%  |         | 10% | I.   | 3%          | 1  | 6%                      |
| IMPROPER ACCESS<br>CONTROL               |      | 12%         |                                   | 9%               |            | 3%  |            | 9%  |                          | 6%  | •                        | 7%  |                       | 8%  | 1          | 6%  | T.      | 5%  | 1    | 2%          | 1  | 4 %                     |
| CRYPTOGRAPHIC                            | 1    | 2 %         | 1                                 | 2%               |            | 18% |            | 1%  | I                        | 2%  | 1                        | 2 % | l.                    | 1%  | I.         | 2 % | I.      | 3 % |      | 1%          | 1  | 1%                      |
| DENIAL OF<br>SERVICE                     |      | 2 %         | 1                                 | 2%               |            | 1%  |            | 1%  |                          | 1%  |                          | 2 % | L                     | 1%  | I          | 2 % | 1       | 2%  |      | 1%          |    | 1%                      |
| BUSINESS<br>LOGIC ERRORS                 | 1    | 4%          | 0                                 | 5%               |            | 1%  |            | 4 % | Ę.                       | 5%  | •                        | 6%  | Ľ.                    | 4%  | 1          | 4%  |         | 3 % | 1    | 2 %         | 1  | 5%                      |
| CODE INJECTION                           |      | 1%          | 1                                 | 1%               |            | 1%  |            | 5%  | Ľ                        | 2%  |                          | 2 % | I                     | 2%  | I          | 2%  | 1       | 2%  |      | 1%          | 1  | 1%                      |
| SQL INJECTION                            | I.   | 5 %         |                                   | 1%               |            | 5%  | 1          | 4%  | 1                        | 2 % |                          | 0%  | L                     | 2%  | L          | 2 % | I       | 2 % | 1    | 2 %         |    | 1%                      |
| COMMAND                                  |      | 1%          | 1                                 | 1%               |            | 1%  |            | 2 % | U.                       | 1%  |                          | 1%  | 1                     | 1%  | 1          | 1%  | L       | 2 % |      | 1%          | l  | 1%                      |
| MEMORY                                   |      | 1%          | 1                                 | 1%               |            | 0%  |            | 0%  |                          | 1%  |                          | 0%  |                       | 1%  |            | 1%  |         | 1%  |      | 1%          |    | 0%                      |


Figure 5: Listed are the top 15 vulnerability types platform wide, and the percentage of vulnerabilities received per industry.

#### Source: HackerOne report, 2018


#### Total Google VRP Rewards (since 2014)




### Google VRP Rewards for Web Platform Bugs



#### Main Causes of XSS Vulnerabilities



#### Web Platform Vulnerabilities as % of Total



Year

### Summary of Vulnerability Trends

- The majority of application vulnerabilities are *"web platform"* issues exploitable against logged-in application users.
- Main vulnerability classes:
  - **XSS** in its various forms
  - CSRF, XSSI / information disclosure, clickjacking / UI redress.
- Long tail of issues caused by cross-origin leakiness of the platform:
  XS-Search, size leaks, pixel-perfect leaks, window.frame counting

# A high-level view of web security

## Three major classes of problems:

#### #1. Lack of transport safety

No confidentiality / integrity of traffic => all bets are off.

Vulnerabilities:

• The use of HTTP, use of non-Secure cookies, mixed scripting/content.

Specs:

• HSTS, Mixed Content, UIR, Secure Contexts, ...



Attacker's scripts running in a vulnerable origin => all bets are off.

Vulnerabilities:

• XSS

Specs:

• <u>CSP3</u>, <u>Trusted Types</u>, <u>[Suborigins]</u>, <u>Sanitization</u>

### #3. Forced loading of endpoints from victim's origin

Broad class of purpose-specific attacks that violate integrity or confidentiality.

- Violating integrity by forcing the inclusion of a resource:
  - CSRF, clickjacking
- Violating confidentiality by forcing the inclusion of a resource:
  XSSI, XS-Search & timing attacks, pixel-perfect attacks, ...

Note: This is getting worse as new APIs are added to the web platform.

Specs:

• SameSite cookies, CORB/CORP, Sec-Metadata, COWP, [Isolate-Me]

### Analysis

The (transport, injections, cross-origin leaks) model covers a large majority of the web platform bugs security engineers see in modern applications.

There are several areas of web platform security that it doesn't cover:

- Containment: HTML sandbox, COWL, script capability restrictions
- Attacks by trusted resources: SRI, Referrer Policy
- Direct attacks on the browser (e.g. history/cache sniffing) or on the user

These classes of issues are still worth spending time on.

#### Final words

To build security into the web platform we need to give developers mechanisms to solving the three big problems in their applications:

- Secure transport
- Injections
- Cross-origin leaks

Failing to address these problems will have a large cost for the platform: developers will either spend a lot of resources on compensating for the deficiencies of the platform or they'll be forced into a constant state of insecurity.

If these mechanisms work as opt-in, we might be able to turn them on by default.



#### Bonus: Isolation features in response to Spectre Three major areas of work to protect against speculative execution attacks:

- How do I limit access to my resources? [summary]
  - Any response loaded in no-cors mode can be exfiltrated by evil.com
  - Specs: <u>CORB</u>, <u>CORP</u>, <u>Sec-Metadata</u>, <u>SameSite cookies</u>,
- How do I make sure my documents live in their own process? [summary]
  - Two sets of converging goals: browsers want to allow process-based isolation; authors want severing of window references
  - Specs: <u>COWP</u> ("level 1") / the old CSP3 `<u>disown-opener</u>' keyword
- How do we restrict the capabilities of documents with dangerous features?
  - Ensure that documents with fine-grained timers can't bypass the SOP
  - Specs: <u>COWP</u> ("level 2"), <u>X-Bikeshed-Force-Isolate</u>